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Abstract. This paper1 presents an evolutionary Multiobjective learning model 
achieving positive synergy between the Inference System and the Rule Base in 
order to obtain simpler and still accurate linguistic fuzzy models by learning 
fuzzy inference operators and applying rule selection. The Fuzzy Rule Based 
Systems obtained in this way, have a better trade-off between interpretability 
and accuracy in linguistic fuzzy modeling applications.  
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1   Introduction 

Interpretability and accuracy are usually contradictory requirements in the design of 
linguistic fuzzy models (FMs). In practice, designers must find an adequate trade-off 
between them for the specific application, increasing the interest of this matter in the 
literature [1],[2].   

Two important tasks in the design of a linguistic FM for a particular application 
are: The derivation of the linguistic rule base (RB) and the setup of the inference 
system and defuzzification method. In the framework of the trade-off between inter-
pretability and accuracy in fuzzy modeling, adaptive inference system and defuzzifi-
cation method acquired greater importance [3],[4]. 

Recently, the use of Multiobjective Evolutionary Algorithms (MOEA) has been 
applied to improve the aforementioned trade-off between interpretability and accuracy 
of linguistic fuzzy systems [5],[6],[7],[8]. Most of these works [5],[6] obtain the com-
plete Pareto (the set of non-dominated solutions with different trade-off) by selecting 
or learning the set of rules better representing the example data, i.e., improving the 
system accuracy and decreasing the fuzzy RB system complexity. In [7],[8], authors 
also propose the tuning of the membership functions together with the rule selection 
to obtain simpler and still accurate linguistic FMs. 

Following these ideas on the advantage of the use of parametric operators and the 
use of MOEAs to improve the trade-off between interpretability and accuracy, in this 
                                                           
1 Supported by Projects TIN2005-08386-C05-01, P05-TIC-00531 and P07-TIC-03179.  
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work we present a MOEA to learn the fuzzy inference (including inference and de-
fuzzification) and to perform rule selection for Mamdani linguistic fuzzy systems. 
The proposed model tries to achieve a positive synergy (this is the concept of coop-
eration we use) between the fuzzy operators and the RB to improve the accuracy at 
the same time that the RB is simplified to improve the interpretability.  

In order to do this, Section 2 introduces the parametric fuzzy operators, Section 3 is 
devoted to describe the MOEA learning proposal, Section 4 develops an experimental 
study, and finally, Section 5 presents some concluding remarks. 

2   Adaptive Fuzzy Operators  

In this section we show the adaptive inference system as well as the adaptive defuzzi-
fication method used in our learning proposal. 

2.1   Adaptive Inference System 

Linguistic FRBSs for system modeling use IF - THEN rules of the following form: 

Ri : If Xi1  is Ai1 and ... and Xim is Aim then Y is Bi 

with i = 1 to N, the number of rules of the RB, and with Xi1 to Xim and Y being the 
input and output variables respectively, and with Ai1 to Aim and Bi being the involved 
antecedents and consequent labels, respectively. 

The expression of the Compositional Rule of Inference in fuzzy modeling with 
punctual fuzzification is the following one: μB' (y) = I (C (μA1 (x1) , ... , μAm (xm)), μB 
(y)), where μB' (·) is the membership function of the inferred consequent, I(·) is the 
rule connective, C(·) is the conjunction operator, μAi(xi) are the values of the matching 
degree of each input of the system with the membership functions of the rule antece-
dents, and μB(·) is the consequent of the rule. 

The two components, conjunction (C(·)) and rule connective (I(·)) are suitable to be 
parameterized in order to adapt the inference system. Our previous studies in [3] show 
that the model based on the adaptive conjunction is a more valuable option than the 
one based on the adaptive rule connective. Hence, we selected the use of the adaptive 
conjunction in this study, in order to insert parameters in the inference system. 

Taking into account the studies in [3], we have selected the Dubois adaptive t-norm 
with a separate connector for every rule, which expression is showed in (1). 

)) Max(x,y,αyx(x,y,αT
Dubois

⋅= ,    (0≤α≤1)  (1) 

2.2   Adaptive Defuzzification Interface 

The most used methodology in practice, due to its fine performance, efficiency and 
easier implementation, is to apply the defuzzification function to every rule inferred 
fuzzy set (getting a characteristic value) and to compute then by a weighted average 
operator. This way of working is named FITA (First Infer, Then Aggregate) [9].  

Attending to the studies developed in [10], in this work we consider to use a prod-
uct functional term of the matching degree between the input variables and the rule 



 Cooperation between the Inference System and the Rule Base 741 

antecedent fuzzy sets (hi), iii hh β⋅=)(f where βi corresponds to one parameter for 

each rule Ri, i=1 to N, in the RB. The adaptive defuzzification formula selected is (2). 
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where Vi represents a characteristic value of the fuzzy set inferred from rule Ri, the 
Maximum Value or the Gravity Center (GC), the one selected in this paper. 

3   Cooperative Evolutionary Selection of Fuzzy Rules and 
Learning of Adaptive Fuzzy Operators with Multiobjective 
Algorithms 

This section describes the basics of two of the most representative second generation 
MOEAs, SPEA2 [12] and NSGA-II [13], as two general propose MOEAs used in this 
work, and later the adaptations we propose to perform the cooperative adaptation of 
the fuzzy operators and fuzzy rule selection.    

3.1   SPEA2 and NSGA-II 

The SPEA2 algorithm [11] (Strength Pareto Evolutionary Algorithm for multiobjec-
tive optimization) is one of the most known techniques in the Multiobjective problem 
solving. It is characterized by the following two aspects: a fitness assignment strategy, 
that takes into account both dominating and dominated solutions for each individual, 
and a density function that is estimated employing the nearest neighbourhood, which 
guides the search more efficiently. A deeper description of the algorithm may be 
found in the aforementioned paper [11]. 

NSGA-II algorithm [12] is also another of the most well-known and frequently-
used MOEAs for general multi-objective optimization in the literature. It is a parame-
terless approach with many interesting principles: a binary tournament selection based 
on a fast non-dominated sorting, an elitist strategy and a crowding distance method to 
estimate the diversity of a solution. As was commented before, a deeper description 
may be found in [12]. 

3.2   Questions Related to the MOEAs 

The evolutionary model uses a chromosome with threefold coding scheme 
(CC+CD+CS) where: 

• CC encodes the αi parameters of the conjunction connective, that is N real coded 
parameters (genes) for each rule, Ri ,of the linguistic RB. Each gene can take any 
value in the interval [0,1], that is, among minimum and algebraic product.  

• CD encodes the βi parameters of the defuzzification. They are N real coded parame-
ters for each rule of the linguistic RB. Each gene can take any value in the interval 
[0,10]. This interval has been selected according with the study developed in [10]. 
It allows attenuation as well as enhancement of the matching degree.  
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• CS encodes the rule selection. It is a binary string of N genes, each one representing 
a candidate rule of the initial RB. Depending on whether a rule is selected or not, 
values ‘1’ or ‘0’ are respectively assigned to the corresponding gene.  

The initial population is randomly initialized with the exception of a single chromo-
some with the following setup: 

• Fuzzy operators part: CC with the N genes is initiated to 0 in order to make Dubois 
t-norm equivalent to Minimum t-norm initially. CD also with the N genes is initi-
ated to 1 with the objective to begin like the standard WCOA method. 

• Rule selection part, CS, with the N rules obtained by the WM-method [13], that is, 
with all the genes initialized to ‘1’. 

The crossover operator employed for the fuzzy operators part is BLX-0.5 [14] 
while the one used for rule selection part is HUX [15]. 

The fitness based on the interpretability (using the number of rules) and the accu-
racy (using the error measure) must be minimized. 

3.3   Improvements for SPEA2 and NSGA-II  

This subsection is devoted to describe the two improvements we propose for SPEA2 
[11] and NSGA-II [12] respectively to perform better the searching process we pre-
tend, that is to guide the search towards the desired Pareto zone with high accuracy 
with the least possible number of rules. 

The Improved Accuracy NSGA-II (NSGA-IIIA) algorithm: 

We propose two main changes on the NSGA-II algorithm, based on the changes pro-
posed by [8] with a few modifications to perform better with our problem, who has a 
larger real part comparatively. They are the following:  

• We use a restarting mechanism carried out twice at 1/3 and 2/3 of the execution of 
the algorithm. Each time, the most accurate individual is maintained as the sole in-
dividual in the external population. The remaining individuals are reinitiated with 
the same rule configuration of the best individual and fuzzy operator parameters 
randomly generated within the corresponding variation intervals.  

• In each of the three algorithm stages (before the first restart, after the first restart 
and after the second restart), the number of solutions in the external population 
considered to form the mating pool is progressively reduced, by focusing only on 
those with the best accuracy. To do that, the solutions are sorted from the best to 
the worst (considering accuracy as sorting criterion) and the number of solutions 
considered for selection is reduced progressively from 100% to 50 % at the begin-
ning 1/3, since 75% to 50% in the middle, and since 66% to 50% at the end.   

The Improved Accuracy SPEA2 (SPEA2IA) algorithm: 

In order to guide the searching process of the SPEA2, we propose to employ a method 
called Guided Domination Approach [16], which gives priority to the accuracy objec-
tive through a weighted function of the objectives. Focusing the searching process we 
can reduce the effort of the search, and a better precision in the non-dominated solu-
tions can be obtained, because the searching effort is concentrated in a reduced zone 
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of the Pareto, being the density of the obtained solutions higher. The weighted func-
tion of the objectives is defined in (3), 

( ) ∑+=Ω
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where aij is the amount of gain in the j-th objective function for a loss of one unit in 
the i-th objective function, and M being the number of objectives. The above set of 
equations require fixing the matrix a, which has a one in its diagonal elements. This 
method redefines the domination concept as follows: A solution x(1) dominates an-
other solutions x(2), if  Ωi(f(x

(1))) ≤ Ωi(f(x
(2)))  for all i = 1,2, … , M,  and the strict 

inequality is satisfied at least for one objective. 
Thus, if we have two (M=2) fitness functions, the two weighted functions are 

showed in (4). 

Ω1 (f1,f2) = f1 + a12 f2,             Ω2 (f1,f2) = a21 f1 + f2 (4) 

4   Experimental Study 

In order to analyze the proposed methods, we built several FMs using the learning 
methods showed in Table 1. WM method is considered as a reference. S and C-D are 
methods that perform rule selection and adaptation of fuzzy operators respectively. S 
+ C-D means rule selection and fuzzy operators adaptation together. SPEA2, 
SPEA2IA, NSGA-II and NSGA-IIIA are the methods that learn the fuzzy operators and 
the rule selection together, as was previously commented. 

Table 1. Methods considered for comparisson 

Ref. Method Description 
[13] WM Wang & Mendel algorithm 
[17] WM + S Rule Selection  

[4],[10] WM + C-D Adaptive Fuzzy Operators 
- WM + S + C-D Rule Selection and Adaptive Fuzzy Operators 

[11] SPEA2 SPEA2 Algorithm 
- SPEA2IA Improved Accuracy SPEA2 

[12] NSGA-II NSGA-II Algorithm 
- NSGA-IIIA Improved Accuracy NSGA-II 

4.1   Application Selected and Comparison Methodology 

The fuzzy partition used for inputs and output has 5 labels. The application selected  
to test the evolutionary model is an electrical distribution problem [18] that has got a 
data set of 1059 cities with four input variables and a single output. The RB is com-
posed of 65 linguistic rules achieved with the Wang and Mendel method [13]. 

We considered a 5-foder cross-validation model, i.e., 5 random partitions of  
the data each with 20% (4 of them with 211 examples, and one of them with 212 
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examples) and the combination of 4 of them (80%) as training, and the remaining one 
as test. We achieved a total of 30 trials for every evolutionary process, because for 
each one of the data partitions, the learning methods have been run 6 times. We show 
the averaged values of the medium square error (MSE) as a usual performance meas-
ure, computed considering the most accurate solution from each Pareto obtained for 
the Multiobjective algorithm. This way to work was also employed in [8] in order to 
compare the single objective methods with the Multiobjective ones based in to con-
sider only the accuracy objective, letting us to see that the Pareto fronts are not only 
wide but also optimal, so similar solutions obtained with the WM + S + C-D should 
be included in the final Pareto. The MSE is computed with expression (5), 
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where S denotes the fuzzy model whose inference system uses the Dubois t-norm as 
conjunction operator showed in expression (2), inference operator minimum t-norm, 
and the adaptive defuzzificación method showed in expression (3). This measure uses 
a set of system evaluation data formed by P pairs of numerical data Zk =(xk,yk), 
k=1,..,P, with xk being the values of the input variables, and with yk being the corre-
sponding values of the associated output variables. 

The MOGAs population size was fixed to 200. The external population size of the 
SPEA2 and SPEA2IA was 61.  

The parameters a12, a21 used for the SPEA2IA have been determined after several 
test and fixed to 0 and 8 respectively, and give more importance to the accuracy. 

4.2   Results and Analysis 

The results obtained are shown in Table 2, where #R is the average number of rules, 
MSEtra and MSEtst are the average MSE for training and test respectively, σ is the 
standard deviation and t-test is the result of applying a test t-student (with 95 percent 
confidence), with the following interpretation: * represents the best average result; + 
means that the best result has better performance than that of the corresponding row. 

Analysing the results obtained we can point out that NSGA-IIIA and SPEA2IA 
shows a simmilar accuracy (slightly better in training) compared with the WM + S + 
C-D with a significative reduction in the number of rules, particularly for NSGA-IIIA. 
Modifications proposed in order to improve the accuracy for NSGA-II and SPEA2 let 
 

Table 2. Results obtained 

Method #R MSEtra σtra t-test MSEtest σtest t-test 
WM 65 56135.75 4321.42 + 56359.42 5238.57 + 
WM + S 40.9 41517.01 4504.85 + 44064.67 906.64 + 
WM + C-D 65 22561.77 3688.27 = 25492.77 830.76 * 
WM + S + C-D 52.8 22640.95 2125.05 = 26444.43 854.95 + 
SPEA2 38.4 24077.42 8225.82 + 29664.50 874.18 + 
SPEA2IA 47.7 22450.72 3949.57 = 25562.74 850.07 = 
NSGA-II 39.1 23303.50 6295.92 + 27920.42 877.83 + 
NSGA-IIIA 41.1 22108.66 4695.30 * 26229.72 868.95 + 
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Fig. 1. Example of the Pareto front for NSGA-II and NSGA-IIIA 

both models improve their accuracy compared with the standard versions of both 
algorithms. Due to the adaptive fuzzy parameters search space is large, it is necessary 
to focus the searching process on the Pareto zone with higher accuracy to reach 
simmilar accuracy level than the mono-objective algorithm based on the accuracy. 
Figure 1 shows the difference between the searching process performed by the 
original NSGA-II (left side) versus the improved accuracy version (right side). 

5   Conclusions 

In the framework of the trade-off between accuracy and interpretability, the use of 
Multiobjective genetic algorithm gives a set of solutions with different level of con-
ciliation of both features. In this work we have proposed a Multiobjective evolution-
ary learning model where the adaptive fuzzy operator parameters are learnt together 
with the rule base selection. This fact allows both elements to cooperate, improving 
the accuracy as well as the interpretability. Methodologies to focus the searching 
process in a specific zone of the Pareto have also been shown useful when an objec-
tive must prevail over the other.  
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